Class ClipSuperior¶
Defined in File RegularizedClip.hxx
Inheritance Relationships¶
Derived Type¶
public Mechatronix::ClipInferior
(Class ClipInferior)
Class Documentation¶
-
class
Mechatronix
::
ClipSuperior
¶
-
clip superior class
Subclassed by Mechatronix::ClipInferior
Inizialization
-
inline explicit
ClipSuperior
()¶
-
void
setup
(real_type h)¶
-
Set
h
anddelta
for the approximation of clipped function: \( \min(a,x) \)\[ \textrm{min}(a,x) = \frac{x+a}{2} -\frac{x-a}{2}\textrm{erf}(\kappa(x-a)) -\frac{\exp(-\kappa^2(x-a)^2)}{2\kappa\sqrt{\pi}} \]where \( \kappa \) is chosen to satisfy
\[ \min(a,a) = a-h \]and thus
\[ \kappa = \frac{1}{2h\sqrt{\pi}} \]
-
void
setup
(GenericContainer const &gc)¶
Evaluate
-
real_type
eval
(real_type x, real_type y) const¶
-
compute clip function \( p(x,y) \)
Evaluate \( \textrm{clip}(x,y) \)
-
real_type
eval_D_1
(real_type x, real_type y) const¶
-
compute clip function partial derivative \( \displaystyle\frac{\partial}{\partial_x} p(x,y) \)
Evaluate \( \displaystyle\frac{\partial}{\partial_x} \textrm{clip}(x,y) \)
-
real_type
eval_D_2
(real_type x, real_type y) const¶
-
compute clip function partial derivative \( \displaystyle\frac{\partial}{\partial_y} p(x,y) \)
evaluate \( \displaystyle\frac{\partial}{\partial_y} \textrm{clip}(x,y) \)
-
real_type
eval_D_1_1
(real_type x, real_type y) const¶
-
compute clip function partial derivative \( \partial^{(2)}_x p(x,y) \)
Evaluate \( \partial^{(2)}_x \textrm{clip}(x,y) \)
-
real_type
eval_D_1_2
(real_type x, real_type y) const¶
-
compute clip function partial derivative \( \displaystyle\frac{\partial}{\partial_x}\displaystyle\frac{\partial}{\partial_y} p(x,y) \)
evaluate \( \displaystyle\frac{\partial}{\partial_x}\displaystyle\frac{\partial}{\partial_y} \textrm{clip}(x,y) \)
-
real_type
eval_D_2_2
(real_type x, real_type y) const¶
-
compute clip function partial derivative \( \partial^{(2)}_y p(x,y) \)
evaluate \( \partial^{(2)}_y \textrm{clip}(x,y) \)
-
inline real_type
operator()
(real_type x, real_type y) const¶
-
compute clip function penalty \( p(x,y) \)
-
inline real_type
D_1
(real_type x, real_type y) const¶
-
compute clip function partial derivative \( \displaystyle\frac{\partial}{\partial_x} p(x,y) \)
-
inline real_type
D_2
(real_type x, real_type y) const¶
-
compute clip function partial derivative \( \displaystyle\frac{\partial}{\partial_y} p(x,y) \)
-
inline real_type
D_1_1
(real_type x, real_type y) const¶
-
compute clip function partial derivative \( \partial^{(2)}_x p(x,y) \)
-
inline explicit