Powers¶
Power1 regular¶
\[\begin{split}x^+ \approx \mathrm{pow}_{1,h}(x) :=
\begin{cases}
\dfrac{\epsilon}{1-z}
& x<0 \\[1em]
\displaystyle
\frac{a_0+z(a_1+z(a_2+z(a_3+a_4 z)))}{(1+z)^3}
& \textrm{otherwise}
\end{cases}
\qquad
z = \dfrac{x}{h}\end{split}\]
\[a_0 = \epsilon,\quad
a_1 = 4\epsilon,\quad
a_2 = 7\epsilon,\quad
a_3 = 8\epsilon,\quad
a_4 = 1-20\epsilon\]
continuous up to the 3rd derivatives. Condition: \(\epsilon<1/20\).
Power2 regular¶
\[\begin{split}(x^+)^2\approx \mathrm{pow}_{2,h}(x):=
\begin{cases}
\dfrac{\epsilon}{1-z} & x<0 \\[1em]
\dfrac{\epsilon(1+z(3+4z(1+z))) + (1-12\epsilon)z^4}{(1+z)^2}
& \textrm{otherwise}
\end{cases}\end{split}\]
continuous up to the 3rd derivatives. Condition: \(\epsilon<1/12\).
Power4 regular¶
\[\begin{split}(x^+)^4 \approx \mathrm{pow}_{4,h}(x):=
\begin{cases}
\epsilon\exp(z) & x<0 \\
\epsilon+z(a+z(b+z(c+zd))) & \textrm{otherwise}
\end{cases}\end{split}\]
\[a = \epsilon,\qquad
b = (1/2)\epsilon,\qquad
c = (1/6)\epsilon,\qquad
d = 1-(5/3)\epsilon\]
\(\epsilon \leq 3/10\) for asymptotic \(x^4/2\)