Class PenaltyBarrierU_base¶
Defined in File PenaltyBarrierU.hh
Inheritance Relationships¶
Derived Types¶
public Mechatronix::PenaltyBarrierU_bipower
(Class PenaltyBarrierU_bipower)public Mechatronix::PenaltyBarrierU_cos_logarithmic
(Class PenaltyBarrierU_cos_logarithmic)public Mechatronix::PenaltyBarrierU_cubic
(Class PenaltyBarrierU_cubic)public Mechatronix::PenaltyBarrierU_hyperbolic
(Class PenaltyBarrierU_hyperbolic)public Mechatronix::PenaltyBarrierU_logarithmic
(Class PenaltyBarrierU_logarithmic)public Mechatronix::PenaltyBarrierU_parabola
(Class PenaltyBarrierU_parabola)public Mechatronix::PenaltyBarrierU_quadratic
(Class PenaltyBarrierU_quadratic)public Mechatronix::PenaltyBarrierU_quadratic_bis
(Class PenaltyBarrierU_quadratic_bis)public Mechatronix::PenaltyBarrierU_quartic
(Class PenaltyBarrierU_quartic)public Mechatronix::PenaltyBarrierU_tan2
(Class PenaltyBarrierU_tan2)
Class Documentation¶
-
class
Mechatronix
::
PenaltyBarrierU_base
¶
-
Base class for controls.
This virtual class is the base definition of all controls classes.
Subclassed by Mechatronix::PenaltyBarrierU_bipower, Mechatronix::PenaltyBarrierU_cos_logarithmic, Mechatronix::PenaltyBarrierU_cubic, Mechatronix::PenaltyBarrierU_hyperbolic, Mechatronix::PenaltyBarrierU_logarithmic, Mechatronix::PenaltyBarrierU_parabola, Mechatronix::PenaltyBarrierU_quadratic, Mechatronix::PenaltyBarrierU_quadratic_bis, Mechatronix::PenaltyBarrierU_quartic, Mechatronix::PenaltyBarrierU_tan2
Public Functions
-
PenaltyBarrierU_base
(string const &name, string const &kind)¶
-
base constrol penalty constructor
-
virtual
~PenaltyBarrierU_base
()¶
-
base constrol penalty destructor
-
void
save
(string const &fname) const¶
-
Save for plotting the penalty and its derivative.
-
void
setupBase
(real_type _epsilon, real_type _tolerance)¶
-
setup basic parameters \( h \) (Tolerance) and \( \epsilon \) (Epsi)
-
virtual string
info
() const¶
-
inline void
info
(ostream_type &stream) const¶
-
inline void
update_epsilon
(real_type epsilon)¶
-
change the epsilon of the control, used in the continuation
-
inline void
update_tolerance
(real_type tolerance)¶
-
change the tolerance of the control, used in the continuation
-
inline virtual void
check_range_throw
(real_type, real_type, real_type) const¶
-
check if value of the control is in the correct range
-
real_type
operator()
(real_type x, real_type a, real_type b) const¶
-
evaluate \( P(x,a,b) = p((2x-(a+b))/(b-a)) \)
-
real_type
D_1
(real_type x, real_type a, real_type b) const¶
-
evaluate \( \displaystyle\frac{\partial}{\partial_x} P(x,a,b) \)
-
real_type
D_1_1
(real_type x, real_type a, real_type b) const¶
-
evaluate \( \partial^{(2)}_x P(x,a,b) \)
-
real_type
D_1_2
(real_type x, real_type a, real_type b) const¶
-
evaluate \( \displaystyle\frac{\partial}{\partial_x}\partial_a P(x,a,b) \)
-
real_type
D_1_3
(real_type x, real_type a, real_type b) const¶
-
evaluate \( \displaystyle\frac{\partial}{\partial_x}\partial_b P(x,a,b) \)
-
real_type
D_2_2
(real_type x, real_type a, real_type b) const¶
-
evaluate \( \partial^{(2)}_a P(x,a,b) \)
-
real_type
D_2_3
(real_type x, real_type a, real_type b) const¶
-
evaluate \( \partial_a\partial_b P(x,a,b) \)
-
real_type
D_3_3
(real_type x, real_type a, real_type b) const¶
-
evaluate \( \partial^{(2)}_b P(x,a,b) \)
-
real_type
solveStandard
(real_type RHS, real_type x_guess) const¶
-
solve \( p'(x) = R \)
Given penalty \( p(z) \) solve the problem \( p'(z)=r \) by Newton method.
-
real_type
solve
(real_type RHS, real_type a, real_type b) const¶
-
solve \( P'(x,a,b) = R \)
Given penalty \( p(z) \) solve the problem \( p'\left(\frac{2x-(a+b)}{b-a}\right)=\frac{(b-a)r}{2}\).
-
real_type
solve_rhs
(real_type RHS, real_type a, real_type b) const¶
-
given \( P'(x(R,a,b),a,b) = R \) compute \( \partial_R x(R,a,b) \)
-